↳ ITRS
↳ ITRStoIDPProof
z
sumto(x, y) → Cond_sumto1(>@z(x, y), x, y)
Cond_sumto1(TRUE, x, y) → wrap(0@z)
Cond_sumto(TRUE, x, y) → if(sumto(+@z(x, 1@z), y), x, y)
if(wrap(z), x, y) → wrap(+@z(x, z))
sumto(x, y) → Cond_sumto(>=@z(y, x), x, y)
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
Cond_sumto(TRUE, x0, x1)
if(wrap(x0), x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ IDependencyGraphProof
z
sumto(x, y) → Cond_sumto1(>@z(x, y), x, y)
Cond_sumto1(TRUE, x, y) → wrap(0@z)
Cond_sumto(TRUE, x, y) → if(sumto(+@z(x, 1@z), y), x, y)
if(wrap(z), x, y) → wrap(+@z(x, z))
sumto(x, y) → Cond_sumto(>=@z(y, x), x, y)
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(0) -> (3), if ((y[0] →* y[3])∧(+@z(x[0], 1@z) →* x[3]))
(2) -> (0), if ((x[2] →* x[0])∧(y[2] →* y[0])∧(>=@z(y[2], x[2]) →* TRUE))
(2) -> (1), if ((x[2] →* x[1])∧(y[2] →* y[1])∧(>=@z(y[2], x[2]) →* TRUE))
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
Cond_sumto(TRUE, x0, x1)
if(wrap(x0), x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ UsableRulesProof
z
sumto(x, y) → Cond_sumto1(>@z(x, y), x, y)
Cond_sumto1(TRUE, x, y) → wrap(0@z)
Cond_sumto(TRUE, x, y) → if(sumto(+@z(x, 1@z), y), x, y)
if(wrap(z), x, y) → wrap(+@z(x, z))
sumto(x, y) → Cond_sumto(>=@z(y, x), x, y)
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(2) -> (0), if ((x[2] →* x[0])∧(y[2] →* y[0])∧(>=@z(y[2], x[2]) →* TRUE))
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
Cond_sumto(TRUE, x0, x1)
if(wrap(x0), x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (2), if ((y[0] →* y[2])∧(+@z(x[0], 1@z) →* x[2]))
(2) -> (0), if ((x[2] →* x[0])∧(y[2] →* y[0])∧(>=@z(y[2], x[2]) →* TRUE))
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
Cond_sumto(TRUE, x0, x1)
if(wrap(x0), x1, x2)
(1) (SUMTO(x[2], y[2])≥NonInfC∧SUMTO(x[2], y[2])≥COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])∧(UIncreasing(COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])), ≥))
(2) ((UIncreasing(COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) ((UIncreasing(COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧(UIncreasing(COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(6) (x[2]=x[0]∧y[0]=y[2]1∧+@z(x[0], 1@z)=x[2]1∧y[2]=y[0]∧>=@z(y[2], x[2])=TRUE ⇒ COND_SUMTO(TRUE, x[0], y[0])≥NonInfC∧COND_SUMTO(TRUE, x[0], y[0])≥SUMTO(+@z(x[0], 1@z), y[0])∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(7) (>=@z(y[2], x[2])=TRUE ⇒ COND_SUMTO(TRUE, x[2], y[2])≥NonInfC∧COND_SUMTO(TRUE, x[2], y[2])≥SUMTO(+@z(x[2], 1@z), y[2])∧(UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥))
(8) (y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧(-1)Bound + y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
(9) (y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧(-1)Bound + y[2] + (-1)x[2] ≥ 0∧0 ≥ 0)
(10) (y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧0 ≥ 0∧(-1)Bound + y[2] + (-1)x[2] ≥ 0)
(11) (x[2] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(12) (x[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(13) (x[2] ≥ 0∧y[2] ≥ 0 ⇒ (UIncreasing(SUMTO(+@z(x[0], 1@z), y[0])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
POL(SUMTO(x1, x2)) = x2 + (-1)x1
POL(>=@z(x1, x2)) = -1
POL(TRUE) = -1
POL(COND_SUMTO(x1, x2, x3)) = x3 + (-1)x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_SUMTO(TRUE, x[0], y[0]) → SUMTO(+@z(x[0], 1@z), y[0])
COND_SUMTO(TRUE, x[0], y[0]) → SUMTO(+@z(x[0], 1@z), y[0])
SUMTO(x[2], y[2]) → COND_SUMTO(>=@z(y[2], x[2]), x[2], y[2])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
sumto(x0, x1)
Cond_sumto1(TRUE, x0, x1)
Cond_sumto(TRUE, x0, x1)
if(wrap(x0), x1, x2)